# International Business and Accounting Research Journal

Volume 8, Issue 1, January 2024, 22-30 http://journal.stebilampung.ac.id/index.php/ibarj

# Blockchain or Bust: The Imminent Revolution in Auditing and Its Existential Impact on the Profession

# Aram Mohammed-Amin Qadir<sup>1</sup>, Danya Salam Mahmood<sup>2</sup>

<sup>1</sup>Department of International Trade, Law and Administration College, University of Halabja, Halabja, 46018, Iraq

<sup>2</sup>Department of Technical Accounting, National Institute for Technology, Sulaimani, 46001, Iraq

## **Info Articles**

#### **Abstract**

Keywords:

blockchain, auditing, revolution, existential impact, professional change, disruption, risk assessment, innovation Blockchain technology is poised to dramatically reshape the landscape of traditional auditing, offering a decentralized, real-time digital ledger that eradicates the need for intermediaries. Each network participant holds a mirror copy of all transactions, which are validated collectively by the community, not by a singular, central authority. Once the network approves a transaction, every ledger updates automatically. This game-changing technology goes beyond simple record-keeping to introduce innovations like smart contracts and public registers, drastically affecting audit controls and processes. This study dives deep into the swirling currents of transformation spurred by blockchain technology. We scrutinize extensive scholarly literature to explore a burning question: Is blockchain a force for evolutionary change in auditing, or does it herald the profession's outright extinction? Our investigation extends into the intricate impacts on the audit profession, spotlighting emerging risks linked to this seismic shift and the fresh opportunities it unveils. Blockchain is not merely an incremental improvement; it's an impending revolution that challenges the very foundation of auditing. Auditors' traditional roles and responsibilities may undergo massive changes or even become obsolete. Yet, as with any revolution, there are risks to consider. Are we prepared for the potential pitfalls, and how will auditors adapt to this brave new decentralized world? Conversely, this upheaval introduces unprecedented opportunities for efficiency, transparency, and fraud reduction that were unthinkable in the era of traditional auditing. So, whether you view blockchain as the savior or the destructor of modern auditing, it is impossible to ignore its existential impact on the profession. The industry stands at a crossroads, and its future hinges on how it navigates the choppy waters of blockchain disruption. This study serves as both a warning siren and a guiding star, charting the perils and potentials as we sail into uncharted territory.

\*Address Corespondence: E-mail: aram.qadir@uoh.edu.iq p-ISSN 2550-0368 e-ISSN 2549-0303

#### INTRODUCTION

Blockchain technology has evolved from its nascent stages to become a transformative force with widereaching implications for record-keeping, transactions, and auditing. Chartered Professional Accountants of Canada (CPA Canada) articulates that the impact of blockchain is so pervasive it could revolutionize the way transactions are initiated, authorized, and recorded (CPA Canada, n.d.). For auditors, understanding blockchain is not optional; it's a necessity. The technology demands a reevaluation of conventional methods for obtaining audit evidence, encompassing traditional stand-alone ledgers and decentralized blockchain ledgers. The first-generation blockchain platforms initially demonstrated the technology's potential but were fraught with limitations. These included restricted transaction throughput, latency in confirmation, a lack of privacy, and high energy costs in mining operations. This initial iteration was largely seen as suitable only for niche financial services applications. The second-generation blockchain technology sought to remedy some of these flaws, focusing on creating a more adaptable environment conducive to decentralized applications. However, it too was hindered by scalability issues, interoperability challenges, and privacy concerns. For example, throughput on popular second-generation platforms like Bitcoin and Ethereum was significantly lower compared to traditional systems like VISA (Bitcoin network-7 tps, Ethereum 15 tps, VISA 24,000 tps). The advent of third-generation blockchain technology, based on Directed Acyclic Graph (DAG) principles, presents a groundbreaking shift. It vastly improves transaction speed (approximately 10,000 transactions per second), offers interoperability among different platforms, and considerably enhances security measures. This version uses far less energy due to its miner-less operations, making it more cost-effective and sustainable (DAG Blockchain, n.d.). In essence, the third-generation blockchain has overcome many of the challenges plaguing its predecessors.

The evolution of blockchain technology has significant ramifications for the accounting and auditing profession. It introduces unprecedented accuracy and efficiency, potentially revolutionizing how data is mined and analyzed. These advantages come with a caveat; the technology is so disruptive that auditors must promptly adapt their methods to stay relevant. Traditional auditing may undergo a seismic shift or even become obsolete, replaced by the superior capabilities of blockchain-based auditing methods. Blockchain has gone through a rigorous evolutionary process to reach its current state. The industry has moved from a first-generation system with significant limitations to a more robust, third-generation technology that addresses most of its predecessors' flaws. For auditors and financial professionals, the journey is just beginning. The third-generation blockchain is not merely an incremental upgrade; it represents a paradigm shift that can redefine the essence of auditing and financial record-keeping (Paradigm Shift in Blockchain, n.d.).

Initially gaining attention for its role in ensuring anonymity in cryptocurrencies like Bitcoin, blockchain technology's true value may lie in the unparalleled transparency it provides. Popovski and Soussou (2018) point out that the core functionalities of blockchain have found relevance across a plethora of industries, far exceeding its initial purpose of underpinning digital currencies. Ethereum, introduced in 2013, served as a pioneering example of this expanded utility. Unlike Bitcoin, which functions solely as a digital currency, Ethereum provides a decentralized platform capable of executing smart contracts. This platform allows developers to design a variety of applications, from establishing markets to recording debts and executing conditional fund transfers, all without relying on intermediaries or assuming counterparty risk (Popovski & Soussou, 2018). Ethereum signifies one of the first major applications of blockchain beyond the realm of digital currency. It serves as a ledger technology that offers an infrastructure for a multitude of new programs, extending blockchain's reach into diverse fields beyond financial transactions. In summary, while blockchain may have first captured public interest for its role in cryptocurrencies, its deeper potential lies in its transparent, decentralized architecture. This has broad implications for numerous industries, allowing for innovation in record-keeping, contract execution, and much more(Qadir, A. M. A. (2022). Tax Avoidance and Lack of Shared Area about How to Impose A Tax on Individual Deals at Cryptocurrency Miner or

Business. Telematique, 4266-4279.). Ethereum is an early testament to this broader utility, laying the groundwork for future applications extending well beyond the financial sector.

## **Problem Statement**

The rise of industrialization and the subsequent explosion in business activities historically necessitated the widespread implementation of auditing methods. The audit engagement process traditionally begins with a contractual agreement between the auditor and the audited entity. This is followed by risk assessment and drafting an audit plan, delineating the scope and objectives. Auditors then amass and scrutinize evidence, forming opinions on internal controls and the integrity of management's information. The engagement culminates in a formal report summarizing these findings. This modus operandi, emblematic of 20th-century practices, is increasingly seen as old-fashioned. It's often marked by substantial costs and significant delays incurred during data gathering, analysis, and reporting phases. In stark contrast, the modern business landscape demands quicker, more transparent auditing solutions that can provide immediate, reliable insights to stakeholders. Recognizing this seismic shift in information needs, academics and industry practitioners have sought to evolve the auditing practice to reflect contemporary business realities better. Blockchain technology has emerged as a leading solution in this context, offering a more efficient and transparent approach to auditing.

Blockchain's decentralized, transparent ledger system dramatically streamlines the audit process. Unlike traditional methods, it eliminates the need for intermediaries, cuts down on time delays, and significantly reduces data collection and processing costs. More importantly, its inherent transparency and immutability offer a level of assurance that is practically unprecedented, bolstering the credibility of the audit reports generated. The archaic methodologies that characterized 20th-century auditing practices are increasingly inconsistent with the speed and transparency demanded by today's business environment. Blockchain technology is a disruptive yet highly promising alternative, reshaping auditing practices to align with modern business needs. This study aims to delve deeper into the potential of blockchain as a transformative tool in auditing, providing insights that could revolutionize the field.

## **Research Questions**

There's not much hard data on how blockchain impacts the auditing world. Even the "Big Four" auditing firms are still pretty new to using this technology. That's why most of what's out there is just literature reviews and scholarly articles, rather than hands-on empirical data. It's a cutting-edge area, and everyone's still in the learning phase. So, while we don't have concrete evidence just yet, there's a lot of buzz and speculation about how blockchain could revolutionize auditing in the future.

## **Research Objectives**

What are we really trying to figure out with this study? Well, we're diving deep into blockchain technology to see if it's just giving the old-school auditing process a tech-savvy makeover, or if it's going to toss out traditional auditing like last year's fashion. Are we talking about a facelift or a full-on revolution here? That's the big question. Whether it's just adding some digital sparkle to make audits easier and faster, or completely cutting out the need for traditional audits, we're on a mission to get those answers.

## LITERATURE REVIEW

In the business landscape, auditors serve as gatekeepers, validating the accuracy, completeness, and presentation of financial transactions and statements (Simoyama, Grigg, Bueno, & Oliveira, 2017). The Enron scandal in 2001 eroded public confidence in audited financial reports, prompting a raft of new regulations and auditing standards that have complicated control activities and increased costs for companies (Mueller, Carte,

& Whittle, 2015; Fearnley, Beattie, & Brandt, 2005; Zabihollah, 2004). Enter blockchain technology, a digital, decentralized ledger system that has the potential to reshape and streamline the auditing field (Schatsky & Muraskin, 2015).

Blockchain's inherent transparency, security, and auditability could significantly reduce accounting, auditing, and compliance costs. This technology enables businesses to record transactions in a manner that is transparent, secure, easily auditable, and highly resilient to disruptions (Schatsky & Muraskin, 2015). It's thought that blockchain could enable more efficient access to data and make the financial auditing process far more streamlined (Spoke, 2015). The technology can reduce manual labor by allowing auditors to easily trace complete transactions through ledger entries (Drane, 2016). Axelsen, Green, Coram, and Ridley (2017) argue that as auditing technology becomes more complex, blockchain stands out with its unique features and distributed systems. Auditors will need to adapt and expand their skill set if the future of auditing leans more towards verifying the integrity of blockchain systems rather than financial data per se. This would entail mastering coding, cryptography, and hashing and honing their soft skills. Blockchain's applications aren't limited to financial audits. The technology also holds promise for compliance and regulatory audits, showcasing its versatility. In summary, blockchain has emerged as a pivotal technology with the capability to transform the auditing profession. From restoring public trust post-scandals to adapting to new regulations and standards, the incorporation of blockchain into auditing practices could be a game-changer, making the entire process more efficient, transparent, and cost-effective. As blockchain becomes more ingrained in auditing, professionals in the field will need to adapt, acquiring new technical skills to navigate this evolving landscape.

## The Trio of Essential Characteristics in Blockchain Technology

Blockchain technology has captured widespread attention due to its trio of core features that make it invaluable: Decentralization, Transparency, and Immutability. According to Elsden et al. (2018), the decentralized nature of blockchain means that no single entity owns or controls the network. Instead, control is distributed among all participants. This setup eliminates the need for middlemen in transactions, offering a system where peer-to-peer interactions can occur without third-party interference. Such decentralization redefines financial transactions, enabling direct transfers without needing an intermediary like a bank. Transparency is another cornerstone of blockchain technology. Although the technology shields personal identity via complex cryptography, transactions are entirely visible and can be traced through public addresses. This level of transparency is unparalleled in financial systems and is instrumental in fostering accountability within transactions. Batubara et al. (2018) suggest that this added layer of accountability is particularly appealing to large corporations seeking enhanced transparency in their operations.

Immutability, the third indispensable feature, ensures that once a transaction is recorded on the blockchain, it cannot be altered or tampered with. Miraz and Ali (2018) assert that this property is especially beneficial for financial institutions, as it mitigates risks related to fraudulent activities and falsification of records. This immutable quality is achieved through cryptographic hash functions, which generate a fixed-length output from variable-length input. Even a minor change in the input data leads to a significantly altered hash, making it extremely challenging to manipulate transaction records. The synergy of these three core features creates a robust and secure framework that has the potential to revolutionize various sectors, particularly the financial industry. The decentralized nature offers freedom from intermediary controls, transparency ensures accountability, and immutability safeguards against fraud. These attributes collectively make blockchain technology a revolutionary tool with far-reaching implications, contributing to its rising prominence and adoption across multiple sectors.

## Key Advantages of Blockchain-Based Auditing Compared to Conventional Auditing Methods

Blockchain technology is poised to revolutionize the field of auditing by enhancing accountability and streamlining audit processes. One of its most promising features is its ability to shift application focus from

being service-centric to user-centric, bolstered by Web 2.0 technologies (Smith, 2017). In a blockchain-enabled audit environment, the system timestamped and authenticates every transaction, allowing users to verify whether a service is operating as claimed. If a discrepancy arises, the immutable records provide indisputable evidence of misconduct.

Another key attribute of blockchain is its utilization of digital signatures and public key infrastructure (PKI) to certify the authenticity of each transaction. The PKI acts as a safeguard against backdating of transactions and adds an extra layer of trust, as it restricts even blockchain administrators from altering records (ICAEW, 2017). This inherent security feature enhances overall confidence in decision-making and simplifies the economy by reducing uncertainty. Furthermore, blockchain's immutable and transparent ledger decreases the probability of financial malfeasance, thus increasing trust in financial records. With real-time access to these records, the technology enables continuous auditing, significantly reducing the time and cost associated with traditional auditing methods (Allison, 2015; Tysiac, 2017). The "Big Four" accounting firms have already acknowledged this cost-saving potential. For example, Ernst & Young announced the launch of Ops Chain, aiming to help organizations tap into blockchain technology to optimize their operations (Alarcon, 2018).

The adoption of blockchain also facilitates the integration of advanced data analytics into the auditing process. Given the resources saved from conventional audit methods, firms are urged to focus on providing advisory services related to control design, change management, and blockchain governance (Anderson, 2017). For instance, KPMG has partnered with IBM Watson to automate and transform audit and tax processes. There is also potential for integrating other forms of artificial intelligence and technologies like drones for inventory counts (Smith, 2018). Blockchain technology is set to dramatically reshape auditing by enhancing accountability, allowing for real-time audit capabilities, and significantly reducing costs. These advantages are not merely theoretical but are gradually being realized by leading audit firms, suggesting an inevitable shift in the auditing landscape (Alarcon, 2018; Smith, 2018). Given these developments, it is reasonable to anticipate a substantial increase in the commercialization of blockchain-based financial audit services and a corresponding decrease in audit costs.

## Utilization of Blockchain in the Fields of Accounting and Auditing:

Blockchain technology represents a paradigm shift in accounting, offering transformative solutions for recording, processing, and storing financial transactions. Rather than residing on a centralized database, financial records on a blockchain are distributed across a network, providing transparency and obviating the need for a singular, authoritative owner. This decentralized approach allows for unprecedented agreement among participants, even as they maintain separate copies of the ledger. This innovation essentially ushers in a new era of 'universal entry bookkeeping,' where each transaction entry is immutably recorded and shared in real-time with all parties involved.

Its technological attributes and operational ethos set blockchain apart—it's a tool and a novel methodology for transactional recording. One of the most compelling advantages of this model is its potential for efficiency gains, particularly in markets with multiple transacting parties. The blockchain's decentralized nature eliminates the necessity for reconciling disparate ledgers and eradicates the costs associated with a central authority responsible for ledger accuracy. Furthermore, the indelible nature of blockchain records enhances transparency by allowing any participant to trace the history of transactions. This feature also enables self-auditing capabilities, further increasing the integrity of financial data. With blockchain, records are more secure and transparent, and the cost and complexity associated with maintaining them are also substantially reduced. As such, blockchain has the potential to redefine the foundational aspects of accounting, from the manner in which financial records are kept to how transactions are verified and audited. This shift will likely have far-reaching implications, transforming the accounting profession and the broader business operations landscape.

Blockchain technology holds transformative potential for the accounting profession, offering innovative ways to streamline costs, improve transparency, and enhance overall efficiency. One of the most significant benefits is the reduction in costs associated with maintaining and reconciling ledgers. With blockchain's decentralized and immutable record-keeping system, the necessity for reconciling divergent ledgers and resolving discrepancies with external parties is minimized, if not eliminated altogether (Pilkington, 2016; Wild, Arnold, & Stafford, 2015; OECD, 2018). The technology provides unparalleled assurance concerning the ownership and transactional history of assets. This clarity can significantly improve an accountant's ability to assess an organization's available resources and obligations. As a result, professionals can allocate more time and resources to value-added activities such as strategic planning, business valuation, and managerial decision-making rather than the rote task of record-keeping (Psaila, 2017).

Blockchain's promise extends beyond simple transaction recording to include advanced features like smart contracts. These programmable contracts autonomously execute when predefined conditions are met, thereby increasing the efficiency of compliance and risk management activities. Smart contracts can also be customized to enable organizations to better adhere to various laws and regulations. Even more, they can be equipped with predefined alert systems that flag suspicious or anomalous transactions in real-time, further enhancing oversight and audit capabilities. Blockchain technology stands to revolutionize the accounting profession by delivering increased transparency, reducing operational costs, and freeing up valuable resources. These benefits align well with the core objectives of accounting—providing accurate, timely information to support better decision-making and adding interpretive value to financial transactions. By integrating blockchain into their operations, accounting professionals and organizations stand to gain not just in terms of efficiency but also in the strategic depth of their role (Pilkington, 2016; Wild, Arnold, & Stafford, 2015; OECD, 2018; Psaila, 2017).

#### Blockchain: To Reform or To Eradicate:

The adoption of blockchain technology in financial transactions significantly alters the role and focus of auditors. Unlike traditional auditing methods, where verifying the accuracy or existence of transactions through external sources is critical, blockchain's transparent and immutable nature lessens the need for such confirmations. However, this doesn't eliminate the auditor's responsibility. Attention is still required in how these blockchain-based transactions are documented and reported in the financial statements, especially concerning the valuation of critical assets. As blockchain adoption becomes more pervasive, an increasing number of financial records will likely transition to this platform. This shift will enable auditors and regulators to verify transactions in real-time, with enhanced confidence in the attribution and integrity of those transactions. Moreover, blockchain technology opens new avenues for auditing services. For instance, auditors may find opportunities in reviewing specialized blockchain transactions, authenticating the existence of digital assets, and ensuring that information on a blockchain aligns with real-world data. These shifts bring efficiency to the auditing process and allow auditors to expand their scope of services, thereby enhancing the overall trust and integrity of financial systems. This evolution calls for auditors to adapt and acquire new skill sets in line with blockchain's technological advancements into the financial landscape.

The advent of blockchain technology brings both opportunities and challenges to the auditing profession. One of the most significant shifts is the transition from reliance on centralized authorities to a decentralized platform where immutable records of transactions are stored. This fundamental change means that auditors no longer have to wait for transaction parties to supply necessary data and documents, expediting the auditing process considerably (AICPA & CPA Canada, 2017). Blockchain also transforms the audit process by replacing the traditional sampling approach. It enables real-time, continuous audits for all transactions within a specific period. This change in methodology will allow auditors to shift their focus from transaction testing to control testing, ensuring the effectiveness of internal controls surrounding the blockchain. However, it is essential to note that just because transaction records are securely stored doesn't

automatically vouch for the reliability of an organization's financial reporting. For instance, "on-chain" transactions could still be manipulated by "off-chain" agreements or related-party deals, requiring vigilant oversight by auditors.

The adoption of blockchain technology will also redefine the auditor's role. Given blockchain's inherent features—transparency, traceability, immutability, and embedded rules and procedures—many traditional audit and control processes may need to be extensively modified, or in some cases, may become obsolete. This evolution provides auditors with fresh opportunities to innovate and redefine industry best practices. Auditors will need to adapt by examining elements like blockchain code quality, protocol changes, and power distribution among network peers. They will need to scrutinize the transactions and the incentives that guide their clients' behaviors within the blockchain ecosystem. Blockchain technology doesn't just streamline audit processes; it disrupts them, pushing the profession to evolve. The skills required for auditors will shift towards understanding decentralized systems, cryptography, and smart contracts, alongside traditional financial scrutiny. This metamorphosis of the auditing profession offers a chance to redefine standards and create value-added services that can be programmatically integrated into transactions.

## **CONCLUSION**

While blockchain technology has been hailed as a game-changer in terms of transaction security and transparency, it does not negate the need for auditors in the financial landscape. Contrary to the popular belief that blockchain's immutable and automated record-keeping would render auditors obsolete, several factors emphasize the ongoing necessity for audit functions. For instance, blockchain does not inherently mitigate the risks associated with unauthorized, fraudulent, or illegal transactions. Likewise, the technology cannot prevent or identify related-party transactions that could distort a company's financial standing (AICPA & CPA Canada, 2017). Additionally, blockchain does not account for "off-chain" transactions that parties agree to execute outside the blockchain ledger. Such transactions pose a significant challenge to auditors as they can lead to substantial discrepancies in financial reports. Furthermore, while blockchain ensures that data is recorded accurately and securely, it does not guarantee that this data is classified appropriately in financial statements. Even with accurate raw data, misclassification can mislead stakeholders and result in noncompliance with financial reporting standards. The advent of blockchain technology indeed revolutionizes the way transactions are recorded and verified. However, the technology's limitations and the complex nature of financial transactions sustain the critical role of auditors. Auditors are required to verify and ensure compliance, identify irregularities, and provide a comprehensive understanding of a company's financial situation. Therefore, rather than eliminating the need for auditors, blockchain actually underscores the importance of adapting and evolving audit practices to meet the challenges and opportunities presented by this disruptive technology.

The advent of blockchain technology has the potential to significantly alter the landscape of auditing but not to the extent of making auditors irrelevant. Contrary to some expectations that blockchain could make the role of auditors obsolete, it appears that audit firms will not only remain crucial in the auditing process but could also witness new opportunities emerging from this groundbreaking technology. Several leading corporations have already initiated methodologies to audit blockchains, and these practices are set to infiltrate the financial services sectors (AICPA & CPA Canada, 2017). Moreover, the technology's inherent transparency and security features will increase the reliability and trustworthiness of financial records. In the traditional audit model, auditors relied on a sampling method, examining only a subset of transactions for irregularities. However, blockchain allows for the review of all transactions ever made, providing a full, transparent ledger that can't be altered retroactively. This will enable auditors to render more robust and reliable opinions in their audit reports, thereby boosting public trust in the financial disclosures of businesses. Importantly, the blockchain itself can become a subject of audit to test its integrity, requiring auditors to

develop new audit procedures that cater to this technological environment. Rather than rendering the auditor's role redundant, blockchain technology augments the function by adding new dimensions of transparency and reliability. In summary, integrating blockchain into the auditing process is one of the most transformative changes to the field, elevating the level of assurance that can be provided while simultaneously offering new avenues for auditors to contribute value.

## **REFERENCE**

- Alarcon, A. J. (2018). Blockchain and the future of accounting. Pennsylvania CPA Journal
- Allison, I. (2015). The work of auditors in the age of Bitcoin 2.0 technology, International Business Times, Deloitte, Libra, Accenture. Available at: https://www.ibtimes.co.uk/deloitte-libraaccenture-work-auditors-age-bitcoin-2-0-technology-1515932
- American Institute of CPAs and Chartered Professional Accountants of Canada (AICPA and CPA Canada). 2017.
- Anderson, A. (2017). CPA, 4 keys to the future of audit. Thomson Reuters White paper. Availableat:https://tax.thomsonreuters.com/wpcontent/private/pdf/checkpoint/whitepapers/Checkpoint-Al-Anderson-Whitepaper.pdf
- Axelsen, M., Green, P., Coram, P., & Ridley, G. (2017). Explaining the information systems auditor role in the public sector financial audit. International Journal of Accounting Information Systems, 24, 15-31.
- Batubara, F. R., Ubacht, J., & Janssen, M. (2018). Challenges of blockchain technology adoption for e-government: a systematic literature review. Retrieved 2 27, 2022, from https://doi.acm.org/10.1145/3209281.3209317
- Blockchain technology and its potential impact on the audit and assurance profession. Available at: https://www.aicpa.org/content/dam/aicpa/interestareas/frc/assurance advisoryservices/downloadabledocuments/blockchaintechnology-and-its-potential-impact-on-theaudit-and-assurance-profession.pdf
- Brender, N., Gauthier, M., Morin, J. H., & Salihi, A. (n.d.). Potential Impact of Blockchain on Audit Practice. Switzerland.
- Drane, J. (2016). Wait, blockchains need audited?, Available at: https://www.linkedin.com/pulse/wait-blockchains-need-audited-jeremy-drane/.
- Elsden, C., Manohar, A., Briggs, J., Harding, M., Speed, C., & Vines, J. (2018). Making Sense of Blockchain Applications: A Typology for HCI. Retrieved 2 25, 2022, from https://dl.acm.org/citation.cfm?id=3174032
- Fearnley, S., Beattie, V., & Brandt, R. (2005). Auditor independence and audit risk: a reconceptualization. Journal of International Accounting Research 4(1). pp. 39-71
- ICAEW (2017). Blockchain and the future of accountancy. Available at: https://www.icaew.com/-/media/corporate/files/technical/information-technology/ technology/blockchain-and-the-future-ofaccountancy.ashx
- ICAEW (2018). Blockchain and the future of accountancy www.charteredaccountantsworldwide. com
- Keogh, R. (2017). Deloitte opens new blockchain lab in Dublin. Deloitte Press releases. Available at: https://www2.deloitte.com/ie/en/pages/about-deloitte/articles/deloitte-opens-newblockchain-lab-in-dublin.html
- Krishna, K. (2018). How will blockchain increase Auditability @ ideas2it.com/blogs/blockchainauditability/
- Manlu, L., Kean, W., & Jennifer, J. X. (2019). How will blockchain technology impact? auditing and accounting: permissionless versus permissioned blockchain. Current Issues in Auditing American Accounting Association 13, (2) 19-29
- Miraz, M. H., & Ali, M. (2018). Applications of Blockchain Technology beyond Cryptocurrency. arXiv: Cryptography and Security, 2(1), 1-6. Retrieved 2 28, 2022, from https://arxiv.org/pdf/1801.03528
- Mueller, F., Carter, C., & Whittle, A. (2015). Can audit (still) be trusted? Organization Studies, 36(9), Sage Journal
- Organisation for Economic Co-operation and Development (OECD). (2018). Blockchain technology and corporate governance. Available at: http://www.oecd.org/official documents/publicdisplaydocumentpdf/?cote1/4DAF/CA/CG/RD(2018)1/REV1&doc Language1/4En
- Pilkington, M. (2016). Blockchain technology: Principles and applications. In Handbook of Research on Digital Transformations, edited by F. X. Olleros, M. Zhegu, & E. Elgar. Cheltenham, U.K.: Edward Elgar.
- Popovski, L., & Sousson, G. (2018). A brief History of Blockchain, Legal Tech News Online, May 14, 2018.

## International Business and Accounting Research Journal 8 (1) (2024)

- Psaila, S. (2017). Blockchain: A game changer for audit processes. Available at: https://www2.deloitte.com/mt/en/pages/audit/articles/mt-blockchain-a-game-changer-for-audit.html
- Schatsky, D., & Muraskin, C. (2015). Beyond bitcoin, blockchain is coming to disrupt your industry. Deloitte Insight.
- Simoyama, F. O., Grigg, I., Bueno, R. L. P., & Oliveira, L. C. D. (2017). Triple entry ledgers with blockchain for auditing. International Journal of Auditing Technology 3 (3): 163–183. https://doi.org/10.1504/IJAUDIT.2017.086741
- Smith, S. S. (2017). Blockchain, AI, and accounting. Available at: https://www.ifac.org/ global- Knowledge-gateway/practice-management/discussion/blockchain-ai-and-accounting
- Spoke, M. (2015). How blockchain tech will change auditing for good. Available at: https://www.coindesk.com/blockchains-and-the-future-of-audit/
- Swan, M. (2015). Blockchain: Blueprint for a New Economy. Beijing, China: O'Reilly.
- Tysiac K. (2017). 5 key issues that merit CPA's attention, Snapshot from Las Vegas cover key issues from presenters at the AICPA ENGAGE conference. Journal of Accountancy.
- Wild, J., Arnold, M. & Stafford, P. (2015). Technology: Banks seek the key to blockchain. The Financial Times (November 1).
- Yermack, D. (2017). Corporate governance and blockchains. Review of Finance 21 (1): 7–31.
- Zabihollah, R. (2004). Restoring Public Trust in the Accounting Profession by Developing AntiFraud Education Programs and auditing. Managerial Auditing Journal, 19,(1). 134-148.